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Abstract

Cholinergic and dopaminergic systems are involved in spatial memory and are modulated by nitric oxide (NO); NO has well documented

effects on place learning in rodents. The aim of the present study was to investigate the effect of NOS inhibition on place learning in the water

maze and to evaluate the relationships between NOS inhibition, learning performance, dopamine (DA) D2 and muscarinic acetylcholine

(mACh) receptors. Male Sprague–Dawley rats received the NOS inhibitor NN-Nitro-l-Arginine (l-NA), or saline and were trained in the

water maze. Rats that were not trained, but received the same treatments were also included. Following treatments with or without water

maze training, [3H]-QNB and [3H]-spiperone binding in cortex, striatum and hippocampus were determined to assess the effects of NOS

inhibition and/or learning on DA D2 and mACh receptor regulation. The overall results of the present study showed that: (1) NOS inhibition

impairs performance in the MWM; (2) NOS inhibition does not affect specific binding to DA D2 (striatum and hippocampus) and mACh

(cortex and hippocampus) receptors; (3) MWM training lowers D2 and mACh receptor binding in cortical regions.

D 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Endogenous nitric oxide (NO) plays an important role in

transsynaptic regulation. NO involvement in the release of

acetylcholine (ACh), catecholamines, excitatory and inhib-

itory amino acids, serotonin, histamine, and adenosine have

been documented (Bowyer et al., 1995; Getting et al., 1996;

Hanbauer et al., 1992; Kano et al., 1998; Lees et al., 1997;

Lonart et al., 1992, 1993; Lonart and Johnson, 1995;

Peterson et al., 1995; Prast and Philippu, 2001; Sandor et

al., 1995; Sequeira et al., 1997; Spatz et al., 1995). NO may

regulate neurotransmitter release in a Ca2+ independent

manner (Meffert et al., 1994) and also mediate in volume

transmission, spatial signaling, and nonsynaptic conduction

among groups of neurons and glia. NO produced by

glutamate stimulation induces exocytosis and release of
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glutamate and DA from nearby neurons, thereby affecting

synaptic plasticity (Kline et al., 2002; Schulman, 1997; Vizi,

2000). In addition to modifying release, NO also inhibits

neurotransmitter reuptake, specifically as regards glutama-

tergic and dopaminergic systems (Kiss et al., 1999; Pogun et

al., 1994a,b; Pogun and Kuhar, 1994). Both effects,

enhancement of neurotransmitter release and inhibition of

reuptake, increase the availability of neurotransmitters in the

synaptic cleft, which in turn may affect post synaptic

receptor modulation and have a role in learning and memory

processes.

Interactions between NO and dopamine (DA) actions

have been investigated and bidirectional relations have been

shown between NO synthesis and DA release (Fujiyama

and Masuko, 1996; Hidaka and Totterdell, 2001). Partic-

ularly, Liu (1996) emphasized the significance of NO in

prolonging the presence and thereby the efficacy of DA in

the synapse.

Following dopaminergic lesions induced by intra-nigral

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)
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application, DA and its nonconjugated metabolites were

lowered in the dorsal striatum and in the prefrontal cortex

(PFC), but not in the hippocampus or nucleus accumbens.

Although this lesion did not affect the motor performance

of the rats or learning of a spatial reference memory task in

the water maze, performance in spatial working memory

and cued version tasks of the water maze were impaired

(Miyoshi et al., 2002). Unilateral striatal injections of 6-

Hydroxydopamine (6-OHDA) decreased spontaneous loco-

motor activity and impaired performance during a spatial

navigation task in the water maze in rats (Heim et al.,

2001). Controlled cortical impact (CCI) is an in vivo rat

model of human traumatic brain injury (TBI), and produces

spatial learning acquisition deficits together with initial

impairments in motor function and working memory. The

D2 receptor agonist bromocriptine applied systemically

after CCI did not affect motor function but improved

working memory and spatial acquisition deficits. Further-

more, bromocriptine treatment augmented the survival rate

of the CA3 neurons of the hippocampus, suggesting

cognitive and neural protection by DA following TBI

(Kline et al., 2002).

Wilkerson and Levin (1999) infused D1 and D2 receptor

agonists and antagonists into ventral hippocampus and used

the radial-arm maze to assess working memory perform-

ance. While the D1 receptor compounds did not have a

profound influence on performance, the D2 agonist quinpir-

ole improved and the D2 antagonist raclopride deteriorated

choice accuracy. D2 receptor knockout mice, tested in place-

learning tasks, show reduced locomotor activity and slower

acquisition (Glickstein et al., 2002; Tran et al., 2002).

However Glickstein et al. (2002) showed that the deficit was

partly overcome by methamphetamine treatment of D2 and

D3 receptor knockout mice, suggesting D1 receptor

activation. The stimulation of CCK-B receptors facilitates

spatial recognition memory and this can be induced by

applying the agonist, BC264, systemically. The facilitating

effect induced by BC264 was abolished by the D2 receptor

antagonist sulpiride, but not by the D1 receptor antagonist

SCH 23390 (Lena et al., 2001) suggesting a key role for D2

but not for D1 receptors. On the other hand, Mele et al.

(2004) suggest the involvement of accumbal D1 as well as

of D2 receptors in spatial memory as locally applied

antagonists (SCH 23390 and sulpiride, respectively)

impaired consolidation in mice. On the other hand, Turner

and Soliman (2000) have shown that high doses of zinc

chloride, which reduces the affinity and increases the Bmax

of D1 receptors in relevant regions of rat brain, declines

performance in a spatial reference memory task. A recent

study by Yang et al. (2004) demonstrates the efficacy of a

selective D1/D5 receptor agonist (A68930) in alleviating the

cognitive deficits induced by hypoxic encephalopathy.

Reward systems and mesolimbocortical dopaminergic

neurotransmission mediate in addiction and learning (Sigala

et al., 1997). Both dopamine D1 and D2 receptors in the

hippocampus are reported to facilitate acquisition and
retention of different working memory tasks (Levin and

Rose, 1995; Packard and White, 1991; White and Viaud,

1991; White et al., 1993). Although the D1/D5 receptors are

implicated in the facilitation of LTP and in the storage of

unpredicted information in the CA1 area of the hippo-

campus (Li et al., 2003), a substantial number of studies

support the involvement of hippocampal D2 activity in

spatial working memory.

NO has a modulatory role on cholinergic transmission.

While l-Arginine and NO donors decrease ACh release at

the inhibitory synapse and increase it at the excitatory

synapse, NOS inhibitors have opposite effects (Meulemans

et al., 1995; Mothet et al., 1996a,b). Effect of NO on non-

quantal ACh release (Mukhtarov et al., 1999, 2000) and

calcium-dependent ACh release have been shown as well.

NO involvement on cholinergic transmission is independent

of choline acetyltransferase (Morot Gaudry-Talarmain et al.,

1997). Interactions between cholinergic and dopaminergic

systems in mediating spatial memory are plausible (Kim and

Levin, 1996; Mattsson et al., 2002).

A large number of studies implicate the role of ACh in

cognitive functions, including learning and memory and

specifically of hippocampal ACh in cognitive functions

including spatial learning (Everitt and Robbins, 1997;

Givens and Sarter, 1997; Sarter and Bruno, 1997). On the

other hand, studies, using local injections of the selective

cholinergic neurotoxin 192IgG-saporin, into the septal area

have been reported to cause only small or no impairments of

spatial reference memory although hippocampal ACh was

reduced (Baxter et al., 1995; Berger-Sweeney et al., 1994;

Torres et al., 1994). In contrast, some groups have reported

decline in spatial working memory (Lehmann et al., 2002;

Walsh et al., 1995) by similar treatments. Recently the

simplistic notion that an increase in hippocampal ACh may

be facilitatory for learning and memory has been chal-

lenged. Elvander et al. (2004) emphasizes the importance of

an optimal physiological level of cholinergic function and

proposes that complex regulatory mechanisms operating on

septal cholinergic and GABAergic neurons will impact

hippocampal functions.

There is an impressive amount of evidence suggesting

the involvement of NO in hippocampal long-term potentia-

tion (LTP) (Wang et al., 1997; Zorumski and Izumi, 1998),

synaptic plasticity and consequently learning and memory.

NO has modulatory effects on different learning and

memory processes such as motor learning (Yanagihara and

Kondo, 1996), avoidance learning (Myslivecek et al., 1996;

Qiang et al., 1997; Telegdy and Kokavszky, 1997), olfactory

learning (Kendrick et al., 1997; Okere et al., 1996) and

spatial learning (Holscher et al., 1996; Kendrick et al., 1997;

Okere et al., 1996; Yamada et al., 1996). While some studies

report impairment of spatial learning by NO synthase (NOS)

inhibition (Bohme et al., 1993; Chapman et al., 1992;

Demirgoren and Pogun, 1995), others have diverse inter-

pretations for the behavioral effects of NOS inhibition. For

example, considering the confounding effects of systemi-
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cally applied NOS inhibitors, Blokland et al. (1999) applied

l-NA locally into the dorsal hippocampus and observed

impaired performance in l-NA treated rats only during the

late phase of acquisition, but no difference between the

groups during the memory test (probe trial). Bannerman et

al. (1994) observed impairment of spatial learning following

NOS inhibition only if the inhibitor is applied before

acquisition; NOS inhibition was without effect on retention,

reversal learning if applied after acquisition of the task. We

have recently shown that NOS inhibition impairs acquisition

in Sprague–Dawley rats, especially during the earlier

phases (Kanit et al., 2003). These effects are likely to result

in plastic changes in related neurotransmission systems and

corresponding brain regions (Hawkins et al., 1998; Huang,

1997; Salemme et al., 1996; Wang et al., 1997) which can

be observed at the receptor level.

Considering the involvement of the cholinergic and

dopaminergic systems in spatial memory, the modulation

of cholinergic and dopaminergic activity by NO and the

influence of NO on place learning, the aim of the present

study was to investigate the effect of NOS inhibition on

place learning in the water maze and to evaluate the

relationship between NOS inhibition, learning performance,

DA D2 and muscarinic acetylcholine (mACh) receptors.
2. Material and methods

2.1. Laboratory animals and experimental design

Three- to four-month-old male Sprague–Dawley rats,

kept under standard colony conditions (3–4/cage, 20–22

-C, 12-h light/dark cycle) with ad-lib food and water, were

used in experiments.

Thirty-two rats (n =8 for each group) were divided into

four groups in a 2�2 factorial design: MWM place learning

(trained vs. control)�NOS inhibition (drug vs. saline).

Rats were sacrificed 24 h after the last experiment

(MWM trained groups) or last injection (control groups) and

brains were dissected on ice. Cortex and hippocampus were

used for ACh, and corpus striatum and hippocampus were

used for DA D2 receptor binding experiments.

The animals were handled under the prescriptions for

animal care and experimentation of the pertinent European

Communities Council Directive (86/609/EEC), and all the

procedures were approved by the Institutional Animal

Ethics Committee of Ege University.

2.2. Drug treatment

The NOS inhibitor NN-Nitro-l-Arginine (l-NA, 50 mg/

kg, Sigma 5501) or saline, were administered i.p., 10 min

prior to testing, for 7 days. The control groups were not

subjected to MWM learning experiments; l-NA and saline

subgroups received injections in the same regimen as the

MWM learning groups.
2.3. The MWM apparatus

A circular pool (130 cm < and 75 cm high) was filled

to a depth of 45 cm with dark yellow opaque water, at 22

-C. The visible platform was constructed of wood (12�12

cm) and protruded 2.5 cm above the surface of the water.

The hidden platform was metal (12�12 cm), painted

yellow, and submerged 1.5 cm below water level. The

maze was located in a 4�3 m room and extramaze

(spatial) cues included posters, a window, a cage and two

experimenters. The maze was divided into four virtual

quadrants, N–S–E–W.

2.4. Morris Water Maze procedure

The rational of the MWM experiments were: (day 1)

showing the animal that there is a platform to escape from

the water and making sure that the rats do not have

sensorimotor deficits that may interfere with the task, (days

2–6) acquisition of place learning using spatial cues and

navigational strategy, (Probe trial) test of memory. In a

protocol modified from Morris (1984), the platform was in

the same position (in the center of quadrant S) throughout

the experiment, visible on the first day and hidden

(submerged) during days 2–6. There were four trials with

an intertrial interval of approximately 20 min for each rat.

Testing started 10 min after the injections and the rats were

handled before the first trial each day. On the first day of

acquisition, the platform was visible and the rat was placed

on the platform for 30 s before the trials began, to introduce

the platform and show that the platform is a mean of escape

from the water.

Throughout the experiment, as stated above, animals

were handled before the first trial each day and then were

released once from each of the four quadrants facing the

center of the pool. The order of the release positions was

varied systematically throughout the experiment as follows:

day 1: NWES, day 2: WESN, day 3: ESNW, day 4: SNWE,

day 5: NWES, day 6: WESN. A trial ended when the rat

climbed on the platform. If a rat had not found the platform

after 60 s, it was placed on the platform by the experimenter.

All the rats were left on the platform for 15 s and then

removed to their home cages by the experimenter.

On day 7, the platform was removed and the rats were

released from the N starting point. The time spent in the

quadrant (S) where the platform had been during acquisition

was recorded.

2.5. Receptor binding experiments

2.5.1. Muscarinic receptor binding

Muscarinic receptor binding assays were performed as

previously reported (Pogun et al., 1992a; Yamamura and

Snyder, 1974). Cortices and hippocampi were dissected on

ice after decapitation; tissues were weighed and homogen-

ized using a glass-teflon homogenizer in 10 volumes of cold



Fig. 1. Average ELs (4 trials/day) during days 1–6; V: visible, H: hidden

platform (MeanTS.E.M.). Animals were released from different starting

positions for each trial. Significant main effects of days ( p <0.001) and

NOS inhibition ( p =0.002) during days 2–6 (ANOVA).

Fig. 2. During the probe trial of day 7 when the platform had been removed,

the time spent in the quadrant where the platform had been during

acquisition (MeanTS.E.M.). *p <0.05 (t-test).
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0.32 M sucrose. Following centrifugation at 1000�g for 10

min, the pellets were discarded and the supernatants were

homogenized again with a polytron in 1:20 volume 0.05 M

sodium–potassium phosphate buffer (pH 7.4). Tissue

homogenates were incubated in triplicates, with 0.06–0.10

nM l-Quinuclidinyl[phenyl-4-3H]Benzilate ([3H]-QNB,

Amersham, TRK 604) for 60 min at room temperature;

10�6 M atropine was used to define specific activity. Free

ligand was rapidly filtered through glass fiber filters (GF/B),

and the bound fraction on the filters was counted in a

scintillation counter (Packard, Tricarb 2100TR) after the

addition of scintillation cocktail.

2.5.2. Dopaminergic receptor binding

Dopaminergic receptor binding assays were performed as

previously reported (Pogun et al., 1992b). Corpus striata and

hippocampi were dissected on ice, tissues were weighed and

homogenized in 100 volume cold 50 mM Tris–HCl (pH 7.7

at 25 -C) with a polytron. Following centrifugation at

50,000�g for 10 min, the pellets were re-homogenized and

re-centrifuged. Final pellets were resuspended in incubation

buffer (96% 50 mM Tris, 4% ion mix [120 mM NaCl, 5 mM

KCl, 2 mM CaCl2, 1 mM MgCl2, 0.1% Ascorbate]) and

incubated with 0.3–0.5 nM [3H]Spiperone (Amersham,

TRK 818) for 40 min at 37 -C; 10�3 M butaclamol was used

to define specific binding. The bound fraction was obtained

and counted as described above.

2.6. Statistical evaluation

Group differences in ELs during the first day of testing

with the visible platform was analyzed by t-test. The

acquisition of place learning was evaluated by repeated

measures analysis of variance (ANOVA) with ELs as the

dependent variable, and the NOS inhibition groups (l-NA,

and saline) and days of testing (2–6) as between- and
within-subjects factors, respectively. On the probe trial of

day 7, groups were compared (t-test) according to the time

spent in the quadrant where the platform used to be during

acquisition (TS).

For each brain region studied, separate multifactorial

ANOVAs were performed with specific [3H]-spiperone or

[3H]-QNB binding as the dependent variable, and MWM

training (MWM trained and control) and NOS inhibition

groups (l-NA and saline) as the factors. Post-hoc tests were

performed as required.

Correlation analyses (Spearman’s) were performed

between behavioral data (acquisition days 1–6 and probe

trial) and receptor binding ([3H]-spiperone binding in the

striatum and hippocampus and [3H]-QNB binding in the

cortex and hippocampus).

SPSS program (version 10.0) was used for all statistical

analyses.
3. Results

3.1. Morris Water Maze learning experiments

Acquisition of place learning during days 2–6 of the

experiment (Fig. 1) is indicated by a significant decrease in

ELs for both groups. Repeated measures ANOVAwith days

as the within-subjects factor and NOS inhibition (l-NA and

saline) as the between-subject factor revealed significant

main effects of days [F(4, 56)=12.842, p <0.001] and NOS

inhibition [F(1,14)=13.628, p =0.002] on performance.

Although rats acquired place learning through days 2–6,

the performance of the NOS inhibited group (l-NA) was

significantly impaired compared to saline treated rats. The

groups did not perform differently on day 1 with the visible

platform.

On the probe trial (day 7), the NOS inhibited rats spent

less time ( p =0.034) searching for the platform compared to

saline treated rats (Fig. 2).



E.O. Koylu et al. / Pharmacology, Biochemistry and Behavior 81 (2005) 32–4036
3.2. Receptor binding experiments

3.2.1. Dopamine D2 receptors

Multifactorial ANOVA for specific [3H]-spiperone bind-

ing with MWM training and NOS inhibition as factors

revealed a significant effect of MWM training in hippo-

campus [F(1, 31)=5.419, p =0.027]. Rats which were

subjected to MWM place learning experiments had

decreased DA D2 receptor binding compared to control

rats which only received injections. (Fig. 3A). NOS

inhibition did not emerge as a significant main effect.

Post-hoc analysis showed that saline treated control rats

had the highest 3H-spiperone binding of all groups

( p <0.05). No significant effects were observed in the

striatum (Fig. 3B).

3.2.2. Acetylcholine receptors

Multifactorial ANOVA for specific [3H]-QNB binding

with MWM training and NOS inhibition as factors revealed
Fig. 3. 3H Spiperone binding in hippocampus (A) and striatum (B); 3H-QNB bind

experiments in Morris Water Maze; Control= rats that were not trained in the w

spiroperidol (MeanTS.E.M.). Significant main effect of MWM training (ANOVA

groups: *p <0.05, Duncan’s test.
a significant effect of MWM training in both cortex [F(1,

31)=8.558, p =0.007] and hippocampus [F(1, 31)=13.839,

p =0.001]. MWM training resulted in decreased [3H]-QNB

binding (Fig. 3C and D). As in DA D2 receptor binding,

NOS inhibition did not emerge as a significant effect.

Significant negative correlations were depicted between

performance on days 1 and 3 of acquisition and [3H]-QNB

binding in the cortex, indicating shorter escape latencies are

correlated with higher receptor binding during early

acquisition.
4. Discussion

The overall results of the present study can be

summarized under three main sections: (1) NOS inhibition

impairs performance in the MWM; (2) NOS inhibition does

not affect specific binding to DA D2 (striatum and hippo-

campus) and mACh (cortex and hippocampus) receptors;
ing in cortex (C) and hippocampus (D). MWM=rats subjected to learning

ater MWM but received only l-NA or saline injections. SPI=spiperone,

); (A) p =0.027, (C) p =0.007, (D) p =0.001. Different from l-NA treated
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(3) MWM training lowers D2 and mACh receptor binding

in cortical regions studied.

We have shown that brain NO2
�+NO3

� levels remain

depressed up to 24 h following NOS inhibition by l-NA

(Kanit et al., 2000) at the dose employed in the current

study, suggesting persisting effects on brain NOS. There-

fore, NO2
�+NO3

� levels can be expected to be approx-

imately 50% of the control values during and 24 h after

behavioral testing when the receptor assays were performed.

However, since the current study was designed to assess

persisting changes, short-term modifications induced by

MWM testing may have been missed.

The NO synthase inhibitor l-NA administration deterio-

rated the acquisition of place learning (Fig. 1). Although the

l-NA treated rats did show a decrease in EL throughout

acquisition indicating learning, the ELs were higher in l-

NA treated rats compared to saline treated controls. This

finding confirms reports by our group and other groups who

have demonstrated impairment of place learning by NOS

inhibition in rats (Demirgoren and Pogun, 1995; Holscher et

al., 1996; Kanit et al., 2003; Qiang et al., 1997).

Furthermore, NOS inhibition impaired performance during

the probe trial, suggesting deficient memory. Our exper-

imental design was similar to the first experiment in the

Bannerman et al. (1994) study who have obtained almost

identical results during both acquisition and probe trial with

NOS inhibition applied before acquisition. In the same

paper, combining the results from a series of delicately

planned experiments, Bannerman et al. (1994) discuss that

systemic NOS inhibition at the doses employed do not

induce gross sensorimotor impairments which may interfere

with the spatial learning task, although the effect may be

causing a behavioral syndrome which may extend beyond

the domain of learning. On the other hand, Sandi et al.

(1995) have shown that l-NA alters exploratory pattern and

reduces locomotion in a novel environment, reduces startle

response to either acoustic or electric stimuli and alters

cardiovascular measures in rats. The effect of NOS

inhibition on motor activity may influence behavior in the

WM (Abekawa et al., 1997; Prendergast et al., 1997;

Tatchum-Talom et al., 2000). Escape latency was taken as

the measure of performance since in another study in our

laboratory, using the same rat strain and l-NA dose, we

have shown that l-NA does not effect swim speed in male

rats but decreases speed in females resulting in an

interaction (Kanit et al., 2003).

Although NOS inhibition in adult animals by pharmaco-

logic manipulations cannot be a direct equivalent of genetic

modifications, studies in endothelial NOS knockout animals

(Dere et al., 2001; Frisch et al., 2000; Reif et al., 2004) also

depict behavioral and neurochemical changes which may

impact learning and memory performance. For example the

knockout mice had higher concentrations of 5-HIAA in the

cerebellum, an accelerated serotonin turnover in the frontal

cortex, and a higher DA turnover in the ventral striatum

(Frisch et al., 2000). In our study, the lack of significant
differences between the groups on day 1 suggests that the

impaired performance observed in the present study cannot

be attributed solely to psychomotor deficit.

In the present study we did not observe an effect of NOS

inhibition on D2 and mACh receptor binding. Some NOS

inhibitors can alter the binding capacity of neurotransmitter

receptors (Bidmon et al., 1999) and increase the binding at

NMDA and AMPA receptors. We did not study the

involvement of the glutamatergic system in the present

study where NOS inhibition may have more profound

effects on glutamate receptors.

Our data shows that l-NA did not effect the specific

binding of QNB or spiperone to mACh (hippocampus and

cortex) and D2 (striatum and hippocampus) receptors. On

the other hand, MWM training caused a decline of receptor

binding, regardless of treatment, in the cortex and hippo-

campus for mACh and only in the hippocampus but not in

the striatum for D2 receptors. This affect may be due to

increased endogenous neurotransmitter levels following a

cognitive task, which also has sensorimotor components,

and a subsequent receptor down-regulation. Brown et al.

(2000) have shown an increase in DA synthesis in the

medial prefrontal cortex following a water maze task in rats;

however, receptor assays were not employed.

The negative correlation between cortical QNB binding

and performance (EL) on days 1and 3 of acquisition suggest

that higher binding is correlated with better performance

(lower ELs) only during the earlier phases of the study.

The radioligand used in the present study (3H-QNB) was

unspecific to depict changes in different subtypes of

cholinergic receptors; therefore, more pronounced changes

in one subtype (e.g. M1) may have been missed.

Most of the studies that aim to elucidate the role of D2

and ACh receptors in spatial memory treat the animals with

agonists and antagonists of the receptor and evaluate

performance subsequently (Brown et al., 2000; Heim et

al., 2001; Kim and Levin, 1996; Milivojevic et al., 2001;

Miyoshi et al., 2002; Setlow and McGaugh, 2000;

Wilkerson and Levin, 1999). The protocol in our study

was almost the inverse of the aforementioned studies; drugs

that exert their actions through receptor binding were not

employed. Receptor binding was assessed after water maze

training, without any in vivo exposure to compounds acting

directly on receptors. Therefore it is hard to make direct

comparisons between the present study and those with

similar aims employing different approaches.

Water maze is one of the tests to study interference with

neurochemical systems and DAergic and AChergic systems

rank high in having impact on learning and memory tests.

Lower ACh receptor binding in the cortex and hippocampus

and lower D2 receptor binding in the hippocampus in

MWM trained rats compared to controls suggest that

increased neurotransmitter levels resulting from training

may be causing a down-regulation of receptors. As

suggested by Myhrer (2003) in a recent review based on

meta-analyses, the memory systems in the rat brain involve
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substantial interactions between neurotransmitter systems,

including DA and ACh, rather than being related to a

specific system. Glutamate and acetylcholine were the most

extensively studied systems and impacted behavior in the

MWM. Similarly influencing dopaminergic activity modi-

fied performance while noradrenaline and serotonin had

weaker associations. Discrepant finding with the same agent

was observed and attributed to the design of the experi-

ments. Future studies are needed to elucidate the complex

interactions between different neurotransmission systems

and behavior.

In conclusion, NOS inhibition does not alter the binding

of 3H-QNB to mACh (cortex and hippocampus) and of 3H-

Spiperone (hippocampus and striatum) to DA D2 receptors,

but impairs place learning in adult male Sprague–Dawley

rats. During early acquisition, cortical mACh receptor

binding is correlated with better performance. However,

later on in the study, water maze training lowers 3H-QNB

and DA D2 receptor binding in cortical regions suggesting

increased neurotransmitter concentration in regions critical

for place learning.
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